
 

  
Abstract— This article describes the implementation of a 
digital signal processor on an FPGA (Field Programmable 
Gate Array) including a graphic monitoring system that 
allows students of the BSc in electronics of the Xavierian 
University to understand and research further on the field 
of audio processing. 
 
The project has recording and visualization modules to 
analyze signals and to observe how the sonic effects are 
produced. 
 
The device consists of two inputs in parallel, one for guitar 
and one for vocals. Each input contains the required signal 
adequacy. After the signal is received, there is a 12 bits 
analog to digital conversion for each input, summing a 
total of 24 bits to be processed by the FPGA. Finally, the 
signal is converted back to analog ready to be amplified. 
 
 
 

Keywords— Audio, Guitar Effects, FPGA, Digital Signal 
Processing.  
 

I. INTRODUCTION 
 
Sound engineering is the discipline that focuses on sound 
phenomena in every field and its applications such as 
recording, acoustics, electroacoustic, live sound and systems 
design. Sound engineering is based on electronics theory and 
musical appreciation [1].  
 
The demand of sound engineers in Colombia is increasing 
continuously due to: 
 

• The continuous growth on sound technology in 
broadcast and television channels, radio stations and 
the high demand on live sound.  

• Evolution of arts in our country and the high quality 
required producing new artists. 

• Colombian cinematography has received more 
attention locally and around the world. 
 

 

 
 
 

This situation encourages the research on digital signal 
processing to facilitate education for students of electronic 
engineering who want to study further how to process digital 
audio. This article describes the design process, results and 
conclusions after implementing a digital system with audio 
effects such as distortion, delay, low pass filter and panning on 
an FPGA from Xilinx. 
 
 

II. METHODS 
 
The project consists on signal processing using an FPGA. The 
final device has an input for voice signals and another one for 
guitar signals. The predefined effects controlled through a 
graphic interface will affect these signals. The interface 
contains the following modules that allow students to analyze 
each effect:  
 

• Effects Selection 
• Signal Monitoring 
• Recording and Synthesis  

 
These modules turn this project into a very useful tool to study 
audio.  

A.  ANALOG TO DIGITAL CONVERTER AD 1[2] 
 
The Analog to Digital converter AD1 [2] is able to convert a 
signal with a maximum of one million samples per second, 
fast enough to perform the most demanding audio applications 
making it suitable for this project. This module is composed 
by two ADCS7476MSPS analog to digital integrated circuits, 
each one with 12 bits to perform simultaneous operations 
fulfilling the requirements of two independent processing 
channels. Also each IC has an anti - alias filter as shown in 
Figure 1. A/D 1 Module Diagram. 
 

 
Figure 1. A/D 1 Module Diagram. 

 
VOICE AND GUITAR AUDIO EFFECTS PROCESSOR IMPLEMENTED ON A XILINX SPARTAN 

FPGA 

Alejandro Valdés, Esteban Aristizábal, Hernán Benítez IEEE Member, Michael Martinez 



 

 

B. DIGITAL TO ANALOG CONVERTER DA2 [3] 
 
 
The DA2 Module converts digital signals into analog signals 
simultaneously in two channels with a 12 bits resolution [3]. It 
consists of two DAC121S101 integrated circuits from 
National Semiconductor. 
 

C. GRAPHIC INTERFACE 
 
The graphic interface was designed in Matlab’s GUIDE 
(Graphical User Interface Development Environment), which 
consists of a visual programming environment to build and 
execute programs that require a continuous data input. 
 

1) Main Menu 
 
The main menu shows all the options available. There are four 
options including Visualization, Recording, Effects Control 
and Synthesis. To access to each one of these options the user 
has to click on the corresponding image and automatically a 
new window will pop up. 

2) Visualization 
 
This option opens a new window that contains a “PLAY” 
button that activates Simulink allowing the observation of the 
signal’s spectrogram and its amplitude. [4]. 

3) Recording 
 
This option allows the user to select the desired period of time 
to record the input signals. It has two buttons, one for each 
input channel.  
 
After the signals have been recorded, a button named “FFT” 
can be pressed to obtain the frequency response of each one 
the two signals recorded. 

4) Effects 
 
This option contains all the audio effects programmed on the 
FPGA. When any of the effects are selected, the program 
sends a signal through the serial port to activate the 
corresponding algorithm in the FPGA. 
 

5) Synthesis 
 
In this section there are 8 buttons representing each one of the 
musical notes (DO, RE, MI, FA, SOL, LA, SI). Each button 
activates a filter that is applied to a white noise sample to 
produce the corresponding frequency of the selected note. 

 
Also there is a “time” button that generates an array of the size 
specified by the user. When the musical notes buttons are 
pressed, each note is being recorded in the current position of 
the array. When the array is full, user can hit “play” and listen 
to all the generated sounds through the white noise filtering 
method. 
 

D. AUDIO EFFECTS 
 
The effects were programmed and simulated in Matlab using 
pre recorded sound samples. 
 
Five effects were implemented : 
 

• Distorsion  (Modifies the dynamic range of the 
signal) 

• Delay   (records a signal and then plays it back 
after an specific period of time) 

• Reverse  (Inverts a delayed signal on time) 
• Low Pass Filter (attenuates high frequencies ) 
• Panning (Locates a mono signal in a stereo field) 

 

1) Distortion 
 
There are two well-known methods to distort an audio signal, 
saturation and absolute value. Saturation consists on 
establishing a threshold lower than the signal’s maximum 
peak that samples can’t exceed, producing a distorted signal. 
 
Distortion by saturation main disadvantage is that if the audio 
signal falls under the specified threshold, it doesn’t get 
saturated reason why the effect had to be designed to change 
threshold’s value dynamically depending on the incoming 
signal’s amplitude. This dynamic design would compromise 
many clock cycles due to the amount of comparisons required. 
In contrast, the absolute value method doesn’t depend on the 
signal’s amplitude, thus it was implemented. Figure 5 
presents the simulation of distortion caused by saturation. 
 
Simulations were developed in Matlab, and they were tested 
using sinusoidal and prerecorded guitar signals. 
Input and output graphics of a sinusoidal signal are shown 
with amplitude of 6 Volts and a frequency of 1 Khz. The 
signal is generated in Matlab. 
 
 



 

 
Figure 2. Output Distortion by Saturation 

 

2) Delay 
 
Delay is one of the simplest audio effects to implement and it 
is widely used in the music industry. It is created summing a 
signal with a copy of itself delayed a constant period of time 
(Figure 3).  This is achieved saving a copy of the signal in 
memory and playing it back after the delay time along with the 
current signal.   
 
The effect is implemented using a data memory as a circular 
buffer and making calculations in the time domain.  
 
 

 
Figure 3. Delay Blocks Diagram. 

 
This project has a delay time of 520ms 
 
The simulation of this effect was tested in Matlab. The results 
showed that if the delay time was smaller than 100ms, it is not 
possible to differentiate the original signal against the delayed 
one, and if the delay time is bigger than 1 second, it makes 
very difficult to play an instrument or sing. 
 

3) Reverse 
 
Reverse uses the same principle of the Delay effect, but in this 
case the delayed signal is not played back normally but 
inverted, producing an interesting sonic effect. 
To achieve this a copy of the original signal is stored in 
memory, and after a specified time defined by the number of 
samples, the audio that has been saved is played back over the 
current sound or original (Figure 4). 
 

 
 

Figure 4. Reverse Effect Implementation 
 

4) Low Pass FIR Filter  
 
Choosing between a FIR and IIR filters depends on the nature 
of the problem. FIR filters are used in situations where a lineal 
phase is required into the pass band of the filter.  Without this 
requirement both FIR and IIR can be implemented. Despite 
IIR filters are computationally less complex, it was decided to 
work with FIR filters to maintain phase lineal. Some audio 
applications use IIR filters resulting in unwanted phase 
distortions. 
 
To design the filter, FDATOOL was used. The implemented 
method is least-squares and the filter parameters were Filter 
Order, Sampling Frequency (Fs), Band Pass Frequency 
(Fpass), Stop Band Frequency (Fstop), Band Pass magnitude 
(Wpass) and Stop Band magnitude  (Wstop). 
 
 
A low pass filter was designed with a sampling frequency of 
100Khz, band pass frequency of 2KHz and a reject band 
frequency of 10Khz 
 
 
 
 

5) Panning 
 
Panning is achieved placing a mono channel in a stereo field. 
The effect is created manipulating the amplitude of the signal, 
when the amplitude of the left channel is attenuated, the 
virtual sound source moves to the right side proportionally to 
the attenuation. 
 
 

 
Figure 5. Panning Diagram 

 
 
 



 

E. PC – FPGA Communication 
 
The communication between computer and FPGA was 
implemented though the serial RS - 232 transmission protocol. 
The FPGA offers a serial RS – 232 port, however, the 
computer from which control data is sent and signals are 
monitored doesn’t have this port. 
 
To connect both devices, a connector cable TU-S9 was used as 
an adaptor from USB to RS – 232. With the required 
installation drivers, after the TU-S9 is connected, a virtual 
COM port is generated that allows a common connection with 
Matlab. 
 
To set up the communication protocol with Matlab, a serial 
object has to be created. 
 
 

s1 = serial ('COM1'); 
 
Then the serial object is associated with a physical port, which 
is used to set up the communication. In this case the 
synchronization speed between FPGA and the computer is 
2400 bauds.  
 
The computer sends one bit to start the communication 
protocol, the ASCII code of the predetermined characters and 
one stop bit. In total the FPGA receives and processes ten bits.   
 
 

F. SYNTHESIS IMPLEMENTATION 
 
The sound synthesis process is conformed by three 
fundamental blocks; Generator, process and output. 
 

• A generator or source is something that produces a 
basic sound that can be molded later. 

 
• A process is something that molds that basic sound to 

get an specific result. 
 

• An Output is what interprets the result in the previous 
block to translate it in mechanical waves (air 
pressure). 

 
The generator or source and the process might change 
depending on the type of synthesis used. For this dissertation 
project the basis of one Spectral Technique method was 
implemented. [5] 
 
The source is a white noise sample. One of the main 
characteristics of white noise is that it has a very wide 
bandwidth and its frequencies have the same power. 
 
To mold the sound coming from white noise, eight FIR filters 
were implemented, each one passing one of the frequencies 
corresponding to the natural musical notes. The following are 

the corresponding frequencies to each one of the musical 
notes. 
 
DO = 261Hz, RE= 294Hz, MI = 330Hz, FA = 349Hz, SOL = 392Hz, 
LA = 440Hz, SI = 492Hz, DO = 522Hz. 
 
Implemented filters are selective with an order of 5000. The 
next figure shows the response of the first filter with a pass 
frequency of 261 HZ. 
 
DO 

 
Figure 6.  261 Hz Filter (DO). 

 

III. RESULTS 
 
The effects that modify the amplitude or frequency of the 
signal are shown with pictures form a digital oscilloscope 
while the ones that modify the time are shown through 
pictures taken from audio software Sound Forge. 
 

A. DELAY 
 

 
Figure 7. Delay implemented on an FPGA 

 
For observation purposes on the delay effect, a musical note 
was played and then muted immediately to avoid the sum of 
the original signal with the retarded one. 
 
Figure 7 shows the output signal when one note is played and 
after the specified time in the effect, it is reproduced again but 
with a lower gain. 
 
The result of the implementation was a delay time between the 
original and the retarded signals of 520ms with 50% 
attenuation on the retarded signal, achieving the project’s 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-200

0

200

400

Frequency (Hz)
P

ha
se

 (d
eg

re
es

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-150

-100

-50

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

X: 260
Y: -0.0865



 

expectative. These results are comparable with those obtained 
with the commercial effects processor Digitech RP100 as 
shown in Figure 8 where the delay between the original and 
retarded signals was 400ms. 
 
 

 
 

Figure 8. Delay on a Digitech RP100 processor. 
 

B. REVERSE 
 
Reverse effect involves a delay, reason why it was observed 
using audio software Sound Forge. Once again a musical note 
was played and immediately muted to appreciate the output. 
 

 

 
Figure 9.  Reverse Effect 

 
Figure 9 shows the output of the reverse effect, consisting of 
one original signal and a retarded copy of the original 
attenuated and inverted. Also it is observable how the retarded 
signal starts with small amplitude and then grows, confirming 
that it is inverted. In this effect, a delay of 490ms was 
implemented. 
 

C. LOW PASS FILTER 
 
Following, the data of the low pass filter implementation is 
presented. The table shows the values of simulation, 
implementation, absolute error and relative error in different 
points. 
 
 
 
 
 
 
 
 
 
 
 

 
 

F 
(KHz) Vin  Vout  Imp dB 

Simulation 
dB 

Absolut 
Error 

Rel. 
Error 

2 500 352 -3,04 -1,63 1,41 86% 
2,5 500 345 -3,22 -1,88 1,34 71% 
3 500 340 -3,34 -2,27 1,07 47% 
3,5 500 328 -3,66 -2,63 1,03 39% 
4 500 320 -3,87 -3,08 0,79 25% 
4,5 500 305 -4,29 -3,6 0,69 19% 
5 500 296 -4,55 -4,22 0,33 7% 
5,5 500 272 -5,28 -4,9 0,38 7% 
6 500 256 -5,81 -5,64 0,17 3% 
6,5 500 240 -6,37 -6,45 0,08 1% 
7 500 220 -7,13 -7,39 -0,26 3% 
7,5 500 215 -7,33 -8,46 -1,13 13% 
8 500 200 -7,95 -9,43 -1,48 15% 
8,5 500 195 -8,4 -10,9 -2,5 22% 
9 500 190 -8,4 -12,4 -4 32% 
9,5 500 184 -8,68 -14,2 -5,5 38% 
10 500 175 -9,11 -16,3 -7,19 44% 
    Avg. Relative Error  28% 

 
 
   

Relative Error 
standard deviation 

24,29 
% 

 
 
 
 

Chart 1. Results from filter designed with FDATOOL 
 
Side frequencies in the filter have a bigger error value than 
mid frequencies. Lower frequencies suffer from saturation 
while higher ones are affected by noise caused by pre 
amplifiers, active filters, A/D and D/A converters. 
 

D. DISTORTION 

1) Absolute Value Distortion. 
 
 

 
Figure 10 Distortion with an input signal of  400mVpp 

 
Figure 10 Shows an input signal of 400 mVpp at 400 Hz 
(Top signal). The output signal (Bottom) is the absolute 
value of the input.  
 
 
 
 
 



 

a) Spectral Analysis 
 

 
 

Figure 11. (a) Input signal spectrum y (b) Output signal 
spectrum. 

 
Figure 11 (a) shows a sinusoidal input signal of 1Vpp at 
1Khz. Using oscilloscope’s FFT function it is observable how 
harmonics are generated with distortion effect (Figure 11 (b)).  

 

2) Distortion by Saturation. 
 

In this type of effect, input signal is trimmed to obtain a 
distorted sound. 

 

 
 

Figure 12. Distortion by saturation. 
 
The more trimmed the signal is, more distortion is generated. 
In Figure 12 input signal is 500mVpp and output signal is 
150mV at a frequency of 1Khz. 
 
 

a) Spectral Analysis 
 

 
 

Figure 13 (a) Input Signal frequency Spectrum, (b) Output 
Signal frequency Spectrum. 

 
Input and output signal frequency spectrum is shown in 
Figure 13	   (a)	   Input	   Signal	   frequency	   Spectrum,	   (b). 
Output graphic evidences how trimming the signal generates 
harmonics. 

 

E. PANNING 

1) Right Panning. 
 
Figure 20 shows the two output channels of panning effect. 
The signal in the top of the graphic corresponds to the left 
channel and the bottom one to the right. Panning is expressed 
as percentage. To obtain a panning effect to the right, the 
signal of the left channel has to be attenuated. Attenuation 
percentage is proportional to signals’ shifting to the opposite 
side of the channel that it is being panned.   
 

 
Figure 14. Panning 50% to the right 

 
As a result of panning 50% to the right, there is a signal 
of 188mVpp in the left channel and a signal of 360mVpp 
in the right channel shown in Figure 14. 
 
 

 

IV. CONCLUSIONS 

• A digital signal processing system was created that serves 
as a starting point for future projects in audio in the 
Xavierian University. Regarding previous electronic 
engineering dissertation projects that focus in the same 
field, it is possible to think in the opening of a new 
research department on sound due to its growing 
relevance not just in music but also in electronic devices 
used daily around the globe like mobile phones and 
electronic agendas. 
 

• When implementing the projects’ FIR filter, two tools 
were tested to generate its VHDL code; the first one was 
Core Generator from Xilinx and the second one was 
FDATOOL from Matlab. Core generator has a very 
practical interface that allows a fast design for filters with 
few parameters and also generates an optimized output for 
the target FPGA. However due to the few parameters 
required to design filters it can’t be specified the 
quantization of data resulting on filters that behave 
differently than the simulation ones. FDATOOL has an 
easy interface that allows the user to completely 
customize filters but its output is not in VHDL thus 
requires to be converted resulting in an output not 
optimized that consumes more data space in the FPGA. 
Finally the second option was implemented with few 
coefficients to avoid FPGA’s resources saturation. 

 



 

• FPGAs use in audio applications is becoming a very 
common practice because they provide excellent results. 
It could be expected that FPGAs get into the field of 
professional audio production Error! Reference source 
not found.]. 

 
• Designing tools like ChipScope Pro from Xilinx, 

Simulink and GUI from Matlab were a key factor to 
develop this project. ChipScope Pro allows the user to 
analyze data directly from the FPGA, Simulink offers 
graphic programming and GUI eases the graphical user 
interface design. 

 
• It was observed that audio effects with delay times less 

than 100ms don’t offer a clear differentiation between the 
original signal and the retarded one. Audio effects with 
times greater than 1 second make it hard to perform an 
instrument, so it’s very important to manage a controlled 
range of time to produce Delay and Reverse effects. 
 

• The processor contains two channels. When 
implementing the second channel it became evident the 
benefits of working on an FPGA; several VHDL 
predesigned blocks for channel one were used for 
building it. 

 
• The combination of two or more effects generates new 

effects. This result can be observed in the Reverse effect, 
which consists of the backwards reading of a delayed 
signal. 

 

V. REFERENCES 

 
[1] Ingeniería De Sonido. (2007). Consultada en Enero de 

2007. Universidad de San Buenaventura Bogota D.C. 
Página de la Facultad de Ingeniería.  
http://www.usbbog.edu.co/index.php?option=com_conten
t&task=view&id=243&Itemid=230 

[2] Digilent (2005). Digilent PmodAD1 Analog To Digital 
Module Converter Board Reference Manual. Consultado 
en junio de 
2008.http://www.digilentinc.com/Data/Products/PMOD-
AD1/Pmod%20AD1_rm.pdf 

[3] Digilent (2006). Digilent PmodDA2 Digital To Analog 
Module Converter Board Reference Manual. Consultado 
en junio de 2008. 
http://www.digilentinc.com/Data/Products/PMOD-
DA2/PMod%20DA2_rm.pdf 

[4] Bemis, R., (2004). Audio Spectrum Analyzer. Obtenido 
en Marzo de 2007 de 
http://www.mathworks.com/matlabcentral/fileexchange/5
572/ 

[5] , C. (2008). Sintetizadores: Una aproximación a la 
recreación del sonido. Consultado en Enero de 2008 de 
http://synth.claudiomomberg.com/sintesis.html/ 

[6] Villazon, Andrés F., Certuche, Leonardo. (2002). 
Procesador programable de efectos para guitarra en 
tiempo real PRO2GUIFECT-RT. Tesis de pregrado, 
Pontificia Universidad Javeriana, Cali, Colombia. 

 
Authors: 
 
Alejandro Valdés – Electronic Engineering Student Pontificia 
Universidad Javeriana. 
alejandrovaldesalvarez@gmail.com  
 
Esteban Aristizábal – Electronic Engineering Student 
Pontificia Universidad Javeriana.  
earistizabal@puj.edu,.co 
 
Hernan Benítez – Assistant Professor at Pontificia Universiada 
Javeriana Cali, hbenitez@javerianacali.edu.co   
 
Michael Fernando Martinez – Assistant Professor Pontificia 
Universiada Javeriana Cali, mfromero@javerianacali.edu.co 
 
Special thanks to Leonardo Jaramillo 
 


